COR: a methodology to improve ad hoc data-driven linguistic rule learning methods by inducing cooperation among rules

نویسندگان

  • Jorge Casillas
  • Oscar Cordón
  • Francisco Herrera
چکیده

This paper introduces a new learning methodology to quickly generate accurate and simple linguistic fuzzy models: the cooperative rules (COR) methodology. It acts on the consequents of the fuzzy rules to find those that are best cooperating. Instead of selecting the consequent with the highest performance in each fuzzy input subspace, as ad-hoc data-driven methods usually do, the COR methodology considers the possibility of using another consequent, different from the best one, when it allows the fuzzy model to be more accurate thanks to having a rule set with the best cooperation. Our proposal has shown good results in solving three different applications when compared to other methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Wang and Mendel’s Fuzzy Rule Learning Method by Inducing Cooperation Among Rules

Nowadays, Linguistic Modeling (LM) is considered to be one of the most important areas of application for Fuzzy Logic. It is accomplished by descriptive Fuzzy Rule-Based Systems (FRBSs), whose most interesting feature is the interpolative reasoning they develop. This characteristic plays a key role in the high performance of FRBSs and is a consequence of the cooperation among the fuzzy rules in...

متن کامل

COR Methodology: A Simple Way to Obtain Linguistic Fuzzy Models with Good Interpretability and Accuracy

The chapter introduces a simple learning methodology, the cooperative rules (COR) one, that improves the accuracy of linguistic fuzzy models preserving the highest interpretability. Its operation mode involves a combinatorial search of fuzzy rules performed over a set of previously generated candidate ones. The accuracy is achieved by developing a smart search space reduction and by inducing th...

متن کامل

Learning Linguistic Fuzzy Rules by Using Estimation of Distribution Algorithms as the Search Engine in the COR Methodology

Learning models from data which have the double ability of being predictive and descriptive at the same time is currently one of the major goals of machine learning and data mining. Linguistic (or descriptive) fuzzy rule-based systems possess a good tradeoff between the aforementioned features and thus have received increasing attention in the last few years. In this chapter we propose the use ...

متن کامل

Improving Simple Linguistic Fuzzy Models by Means of the Weighted COR Methodology

In this work we extend the Cooperative Rules learning methodology to improve simple linguistic fuzzy models, including the learning of rule weights within the rule cooperation paradigm. Considering these kinds of techniques could result in important improvements of the system accuracy, maintaining the interpretability to an acceptable level.

متن کامل

Improvements to the Cor Methodology by Means of Weighted Fuzzy Rules

In this work we propose the hybridization of two techniques to improve the cooperation among the fuzzy rules: the use of rule weights and the Cooperative Rules learning methodology. To do that, the said methodology is extended to include the learning of rule weights within the rule cooperation paradigm. Considering these kinds of techniques could result in important improvements of the system a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society

دوره 32 4  شماره 

صفحات  -

تاریخ انتشار 2002